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Abstract 

A general structure-factor formula for n-dimensionally 
modulated structures (n = 1, 2, ...) has been derived to 
have both density (or substitutional) and displacive 
modulations. This structure-factor formula covers any 
modulated structure described by a (3 +n)-di- 
mensional space group. Future papers show the 
applications of this formula to one- and three-di- 
mensional modulations. 

1. Introduction 

Modulated structures have periodic distortions of the 
atomic position and/or the occupation probability of 
atoms from some fundamental (basic) structure. These 
distortions are called the displacive and density (or 
substitutional) modulations. These structures show a 
variety of satellite reflections. The simplest case is of 
one-dimensional modulation. Then the diffraction 
vector h of each spot can be written with the unit 
vectors a*, b*, c* in the reciprocal lattice of the 
fundamental structure and a wave vector k of the 
modulation wave as 

h = h 1 a* + h 2 b* + h 3 c* + h 4 k, (1) 

where hi to h 4 are integers. The wave vector k is written 
as k 1 a* + k 2 b* + k 3 c*. In some cases, the position of 
satellite reflections continuously changes with tem- 
perature and/or with the composition of a material. A 
characteristic feature of these so-called incommensur- 
ate structures is that k is incommensurable with the 
reciprocal lattice of the fundamental structure: at least 
one of k t (i = 1, 2, 3) is irrational. In other cases, the 
dimension of modulation is higher than one. In an 
n-dimensional modulation (n = 1, 2 . . . .  ), the 
modulation wave has n vectors: all reflections are 
assigned by 3 + n integers h~, h 2 . . . . .  h3+ n as 

h = h I a* + h 2 b* + h 3 C* + ~ h3+ i k i, (2) 
i = 1  

* A preliminary report has been published at the International 
Conference on Modulated Structures, Kailua Kona, Hawaii 
(Yamamoto, Nakazawa & Tokonami, 1979). 
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where k 1, .... k n are the wave vectors of which none are 
described by the integral linear combination of the 
others. 

The theory of symmetry of such incommensurate 
structures progressed recently (de Wolff, 1974; Janner 
& Janssen, 1977). One-dimensionally modulated in- 
commensurate structure is described by a fictitious 
four-dimensional lattice and its symmetry is described 
by a four-dimensional space group and, in general, an 
n-dimensionally modulated structure is described by a 
space group of (3 + n)-dimensional space, considering 
a (3 + n)-dimensional lattice, that is, the symmetry of 
the (3 + n)-dimensional lattice is generally higher than 
that of the usual three-dimensional lattice. 

Even in modulated structures with all wave vectors 
k I being commensurable, that is, the commensurate 
(super-) structure [many superstructures can be regar- 
ded as the modulated structure (Cowley, Cohen, 
Salamon & Wuensch, 1979)], their multi-dimensional 
symmetry is higher than or equal to their three- 
dimensional symmetry. If the multi-dimensional sym- 
metry is higher than the three-dimensional one, the 
number of parameters is expected to reduce in 
comparison with those in the usual analysis. Further- 
more, in some cases, the phenomena closely related to 
the symmetry of the crystal, for example the symmetry 
of cell constants, ferro-electricity, etc., are correctly 
understood only by considering multi-dimensional 
symmetry. In such cases, the superstructure can 
conveniently be analyzed on the basis of a multi- 
dimensional description and multi-dimensional sym- 
metry as will be shown in a following paper 
(Yamamoto, 1982a). 

However, almost all modulated structures (including 
superstructures) have been analyzed on the basis of the 
three-dimensional symmetry until now. In these 
analyses, the superstructure is analyzed with the usual 
structure-factor formula while the incommensurate 
structure is analyzed with the formula derived for that 
structure because of the absence of a general structure- 
factor formula, or is analyzed based on the super- 
structure model. In this paper, a general structure- 
factor formula for modulated structures is derived. This 
gives a unified method of the analysis of incommensur- 
ate structures or superstructures mentioned above. 

© 1982 International Union of Crystallography 



88 S T R U C T U R E  F A C T O R  OF M O D U L A T E D  CRYSTAL STRUCTURES 

Since a structure-factor formula for incommensurate 
structures was first derived by Dehlinger (1927), many 
people have derived the formulas for several cases 
(Preston, 1938; Kochendorfer, 1939; Daniel & Lipson, 
1943, 1944; Hargreaves, 1951). Recently, Korekawa 
(1967), B6hm (1975), Pynn, Axe & Thomas (1976) 
and Toman & Frueh (1976) have derived more general 
formulas. Korekawa derived a structure-factor formula 
for one-dimensional modulation in which the density 
modulation is accompanied by the displacive 
modulation provided that the modulation wave is 
harmonic. This is extended for the case of an 
anharmonic modulation wave by Toman et al. B6hm 
derived a simple formula for a displacive modulation 
with an anharmonic wave. On the other hand, Pynn et 
al. derived a formula for two-dimensional displacive 
modulations with a harmonic wave. The extension of 
these formulas for more general cases is easy. 
However, these expressions are not convenient to 
analyze a modulated structure on the basis of a 
multi-dimensional description because these do not take 
into account the multi-dimensional lattice and multi- 
dimensional symmetry. 

de Wolff (1974) first derived a structure-factor 
formula based on the consideration of a multi-di- 
mensional lattice describing a modulated structure. 
This formula has, however, some limitations: the 
modulation must be either one-dimensional displacive 
or one-dimensional substitutional. To obtain a more 
general and convenient formula, a structure-factor 
formula is derived for general cases of n-dimensional 
modulations with some wave vectors commensurable 
with a*, b*, e* and others, incommensurable, including 
the cases with all wave vectors commensurable or 
incommensurable as special cases. The formula ex- 
plicitly includes the symmetry operators in the multi- 
dimensional space group as in the usual structure- 
factor formula of the three-dimensional space. This 
makes it possible to derive easily the extinction rules in 
the modulated structure and makes the structure 
analysis based on the multi-dimensional description 
easy. This formula is successfully applied to the 
one-dimensional modulation of CuAu and the three- 
dimensional modulation of wiistite as shown in two 
following papers (Yamamoto, 1982a,b). 

dimensional space R a. It is easy to show that the lattice 
point 

3 + n  

h ' =  ~ h s b i (3) 
S=I 

in R3+ n is projected onto (2). The unit vectors of the 
direct space are given by a~ = a - ~7= ~ k~ d i, a 2 = b - 
~7= k~d s, a 3 : c - ~ n  " : d i ( i =  1 2, 1 S= 1 k~ d i and a 3 + i , 

. . . .  n), where k], k~, k~ are the a*, b*, e* components of 
k i and a, b, e are the unit vectors reciprocal to a*, b*, 
e*. From the definition of these vectors, a vector x = 
x~ a + x 2 b + x 3 e in the usual three-dimensional space 

3~3+" = k~ x I + R 3 is expressed by x = ~ i = ~  Xsas with x3+ s 
k~ x 2 + k~ x 3. (It should be noted that x 3 +s is the scalar 
product of the wave vector k s and a vector x in R 3 .  ) 

Therefore, the al, a2, a3 components are the same as 
those referring to a, b, e. Similarly, the components of 
the temperature-factor tensor B in R 3 a r e  expressed by 
the components referring to a s (i = 1 . . . . .  3 + n). Then 
Bij  for i, j < 3 are the same as those referring to a, b, e 
while B~ 3+j and Ba+ji  for i < 3 are equal to 
~3m= 1Btmk3m and B3+i,3+j'are equal to ~ , n =  lkimBmnkJn • 

From the analogy with the four-dimensional des- 
cription of the one-dimensionally modulated structure, 
we consider the 'a tom' continuous over the extra space 
which is spanned by a3+ s : d i (i = 1 . . . . .  n). In this 
description, the fundamental structure is described by 
the atom which has the same x l, x 2, x 3 coordinates over 
the extra space: these are independent of x3+ i (i = 1, 
.... n). The deviation in the modulated structure from 
the fundamental structure occurs on a hyperplane 
parallel to R 3. Therefore, the a~, a 2, a 3 components of 
the atomic position of the/~th atom in the unit cell of a 
multidimensional lattice, x~' (i = 1, 2, 3), are written as 

x}' = .~}' + u}' (i = 1, 2, 3), (4) 

where .~]', .~f, . ~  are the a~, a 2, a 3 components of the 
atomic position of the /tth atom in the fundamental 
structure in R3+ n (which are equal to the a, b, c 
components of the positional vector in the three- 
dimensional fundamental structuret and u'i', u~, up are 
the displacements from )?~', )?f, .~f along the a, b, e 
axes.  Then the a s (i _> 4) components of the positional 
vector are given by 

2. Structure-factor formula  

In the multi-dimensional description of a modulated 
structure, the reflection (2) is made to correspond to the 
lattice point in the reciprocal lattice of (3 + n)-di- 
mensional space R3+ n (see Janner & Janssen, 1977). 
The reciprocal lattice is spanned by b 1 = a*, b 2 = b*, 
b 3 : C* and b 3 +l  : ki + dt (i = 1, 2, . . . ,  n), where d t are 
the unit vectors perpendicular to the usual three- 

x~+t = £¢~+i + u~+i (i = 1, 2 , . . . ,  n), (5) 

where ~ + i  is the (3 + i)th coordinate in the funda- 
mental structure which is a continuous parameter 
(independent o f~)  and u'~+ i ~3  i : m = l km U"m" (See Fig. 1.) 
In the modulated structure, the displacements u~', u~, u~ 
are the periodic functions of )?~+i (i = 1, 2 . . . . .  n). 

t In some modulated structures, the fundamental structure is 
incommensurate and the three-dimensional fundamental structure 
cannot be taken (Janner & Janssen, 1980). Such a case is not 
considered in this paper. 
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Therefore, these are expressed in terms of the Fourier 
series as 

l } 
u}' = ~ Z u"lmlexp 2zr/ . mj-v3÷i + c.c., (6) 

Im} 
where mj means the order of harmonics for the j th  
wave, the wave vector of which is k J, {m} denotes one 
set ofmj,  (m 1, m 2 . . . . .  m~), Zt,~I stands for the sum over 
all sets, u~,~ is the complex amplitude of the plane wave 
exp{2ra~j  mj x3+j/ and c.c. denotes the complex 
conjugate. 

Similarly, the U components of the temperature- 
factor tensor Bij ( i , j  = 1, 2, 3) can be written as 

1 / " } 
B"..= E B ~ t m l e x p  2zr/ ~ rnjx~'+j + c.c., (7) 

t,l 2 {ml ( j = l  

where B~;Imr is the complex amplitude. Because the 
thermal motion occurs on a hyperplane parallel to R x, 
B~.3+ j (i <_ 3) and B~+,.3+j (i, j = I, ..., n) are obtained 
from (7) by the relation mentioned before. For isotropic 
temperature factors, we have, instead of (7), 

B" = - ~ Bf'ml exp 2ra" mjx~+j + c.c. (8) 
2 {m} j= 1 

The occupation probability in the density modulation 
is given by 

PU=-~-~Pl" , , lexp 2za" rn:x~+: +c.c. ,  (9) 
2 {m} j = 1 

where P~',~I is the complex amplitude. 
The structure-factor formula for the n-dimensional 

modulation is the direct extension of de Wolff's 
formula, which has the following form. 

a 

xt x~ It 

-- 17/ 

xd2)..-- -~ 

24 
X4 

a~ 

Fig. 1. The relationships between 2~, 24, x l, x 4 and u t in the case of 
one-dimensional modulation with k = k~ a*. 

1 1 
Fh, = Z f dxff ... f dx~+, f " ( h )  P" 

uO 0 

89 

(10) 

where h' is the reciprocal-lattice vector of (3) in R3+ n 
and h is its projection onto R 3 which is represented by 
(2), f "  (h) is the usual atomic scattering factor for the 
gth atom at the point h. The indices i and j run from 
one to 3 + n. The derivation of the formula is based on 
the consideration of a multi-dimensional description of 
the modulated structure and is quite intuitive. The other 
simple derivation from the usual formula in the 
three-dimensional space is given in Appendix 1.* In 
one-dimensional modulation, (10) reduces to 

1 
Fh, = Z J d.~ff fu (h)  p ,  

u 0  

where g' = ~__ ~ h i bi and h is its projection onto R 3 and 
i and j run from one to four. This is the extension of de 
Wolff's formula to the case which includes both the 
density and displacive modulations. This is also the 
extension of formulas derived by Korekawa and 
Toman et al. (see Appendix 2). Formula (10) has a 
convenient form to introduce explicitly the symmetry 
operation into the formula because this is expressed in 
terms of the multi-dimensional space. 

The symmetry of an n-dimensionally modulated 
structure is specified by a space group in R3+ n (Janner 
& Janssen, 1977). Therefore, it is convenient to express 
the summation of g over all atoms in the unit cell in 
(10) by using the summation over all non-equivalent 
atoms and all symmetry operators in R 3 +,. 

As mentioned previously, u~' is a periodic function of 
2~, ..., )?~+, and consequently x~' is a function of them. 
Similarly, B.". P" are periodic functions of them. To 

I J '  
t.L - t~ " ' ,  show this we write x~, B~'j and P" as x t (x a, . ~?~+n), 

Be. (2~ .~+,) ,  p,()?~,, "~'+n) and call them 
l J  ' " ' ' 9  " ' ' '  

modulation functions or modulation waves. Since x}' 
and x}' are the a t components of vectors in R3+ n, the 
coordinates of the 2th atom equivalent to the gth atom 
are obtained from x"  ( .~ ,  -" .... x 3 +,,) by the symmetry 
operation (FI It) in R3+,,: 

.,1. -A x i (x 4 . . . .  , ~:3a+n) = [Iqx*'(~:~ . . . .  ,-~+n)li + rt 

-Iz 
= ~ Rijx~'(Yc~, ..., x3+n) + rl, (12) 

ij 

*Appendices 1, 2 and 3 have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
36225 (9 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH 1 2HU, England. 



90 STRUCTURE FACTOR OF MODULATED CRYSTAL STRUCTURES 

where &~ = (Rxu)t + r t, Ru is the/ j  element of (3 + n) 
x (3 + n) rotation matrix R which is (3 + n)-reducible 
(Janner & Janssen, 1977) and r t is the a t component of 
the translation vector v in R3+,. (Mathematically, the 
matrix R is an orthogonal matrix representation of one 
of the proper or improper rotations of the point group 
but is simply called the rotation matrix in this paper.) 
Similarly, the symmetric tensor of second rank, B.". 

td 
(x~ . . . . .  .~+,),  in R3+ . is transformed as 

B~a/(.~4 a, .,.,.~+,) = [RB" (.~, .... x~+,)Rlu 

= Y ~ (13) • , 3 + n ) R m : ,  
lrn 

where ~ is the transpose matrix of R. A scalar P"(.~,  
-" is transformed as ..., x~+,) in R 3 +  n 

Px (x4X, "", x~+n) = Pu(x~ . . . . .  ~?~+n)" (14) 

The isotropic temperature factor, B"(J~ . . . . .  ~ '+,)  
has the same transformation property as the oc- 
cupation probability P ,  (d: f . . . .  , d: 9+,,). 

Substituting (12)--(14) into (10), and using a prop- 
erty of periodic functions, we have a final form 

1 1 

Fh'-- ~. P" f dx~. . ,  f dfc'~+nf"(h)P"(fcf,. . . ,fc~+n) 
p(RIr) 0 0 

x exp(-  Zt.l ht[RB"('~:'~' ..... "~+")R]uh: 

+ 2~riZj {hj[Rxu(fc~,...,YC~+n)lj+ h:rjO, (15) 

where P" is the multiplicity of the pth non-equivalent 
atom in the fundamental cell, It runs over all non- 
equivalent atoms and (R Iv) is over all symmetry 
operators in R3+ ~ which generate new atoms from the 
non-equivalent atoms. 

3. Electron density and structure factor in R 3 

The electron density in the (3 + n)-dimensional space is 
obtained from the usual formula: 

p(xl,...,x3+.) 1 [ 3+. ) 
='-V- Z Fh, exp 1,2ni Z hjx,] ,  

h ...... h,.. j=l "(16) 

= 1 (27z / j3  ( h i  

h~ . . . . .  h3, . 

In the incommensurate structure, the reciprocal-lattice 
points h' in R3+,, are projected onto h in R 3 and the 
correspondence between h' and h is one-to-one. 
Therefore, the structure factor in R 3, Fh, is equal to Fh, 
(see Fig. 2a). Then the electron density in R 3 is given by 

1 
P(xl 'x2 'x3)='- 'V Z Fh expl2ztih.x}, (18) 

h 

where ~.h means the summation over all h and x is x~ a 
+ x 2 b + x 3 c. On the other hand, in the commensurate 
case, an infinite number of lattice points are projected 
onto the same point in R 3. For example, we consider 
the case in which k I is commensurable with a*, b*, c*: 
k~, k~, k~ are expressed by fractional numbers with a 
common denominator M, that is, k~ = m l / M  , k~ = 
m2/M, k] = m3/M , where ml, m2, m 3 and M are 
integers. Then for any integer i, all lattice points 
in R3÷,, specified by hl + imp, h 2 + im2, h 3 + im3, h 4 -- 
iM, h.~ ..., h3+,, are projected onto the same point h = 
!10 + L~=I h3+:k~ where h 0 = h I a* + h 2 b* + h 3 c* (see 
Fig. 2b). Therefore, the structure factor in R3, Fh, is 
defined by the summation of Fh, over all reflections 
which are projected onto h and then the electron 
density is also given by (18). 

This structure factor is given explicitly as follows. 

1 
F h --  

M 
M 1 1 

x Z Z p~' f dx5 "'" f d.~3+n fu(h)  P=(-~ . . . .  , X~+n) 
g(RIr)  v = l  0 0 

x exp(-- ~ ht[RB,(Sc~, . . . ,  X~+n)~ltjhj 

+ 2zri Z {hj[axn(x~ . . . . .  x~+n)]j + hj rj] , (19) 
J / 

\,,, 

where V is the volume of the fundamental cell in R 3 and 
h~, ..., h3+" run over all integers. As stated before, a 
point in the usual three-dimensional space is expressed 
by Xl, x2, x3, x3+l = Y~=I k~xj (i = 1, ..., n). Therefore, 
the electron density in R 3 is given by 

(a) (b) 
Fig. 2. The projection of four-dimensional lattice points in the 

reciprocal space in R 4 onto R 3. In the incommensurate structure 
(a), the lattice points in R 4 and the reflections in R 3 have 
one-to-one correspondence while some lattice points in R 4 are 
superposed on R 3 in the commensurate structure (b). 
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where ~ = v/M + Y~= 1 k~ fc f. Similarly, if several 
wave vectors k i are  commensurable with a*, b*, e*, the 
integrals with respect to J~'+i are replaced with the 
summations. Since the structure factor obtained from 
experiments is the absolute value of the structure factor 
in R3, this structure-factor formula must be used in the 
commensurate phase. However, if the reflections with 
high satellite indices (corresponding to the commen- 
surable wave vectors) are weak enough so that the 
superposition of reflections in R 3 mentioned above can 
be neglected, the structure factor in R 3 is approxi- 
mately equal to Fh, of (15). 

The structure-factor formula (15) or (19) is con- 
venient to analyze modulated structures on the basis of 
a multi-dimensional symmetry. The extinction rules are 
easily derived from (15), as shown in Appendix 3, and 
a computer programming of the formula is easy 
because all atomic positions are given from the atomic 
position of non-equivalent atoms by the symmetry 
operators of a space group in R3+ .. This makes it 
possible to write a computer program available for the 
refinement of any modulated structures. The formula 
was successfully applied to a CuAu alloy and wiistite 
(Fel_xO) as shown in future papers (Yamamoto, 
1982a,b). These have both the substitutional (or 
density) and displacive modulations. The dimensions of 
the modulations are one in CuAu and three in wiistite. 

4. C o m m e n t  and discussion 

In the final formula (15) for the incommensurate phase, 
Fh, is invariant for the replacement of x ~+ l with J ~+ t + 
t in the integrand because P", B~'j and u~' are the 
periodic functions of x~'+t, where t is an arbitrary 
number, and consequently the integral gives the same 
value except for the phase factor, that is, a uniform 
phase shift of the modulation functions for all atoms 
does not affect the intensity. This shows that the 
absolute phase of the modulation function is not 
determined in principle although the relative phase 
among the modulation waves of atoms can be 
determined. On the other hand, this can be determined 
in the commensurate phase because the integral is 
replaced by the summation. It should be noted that if 
the higher-order satellite reflections are so weak that 
superposition of satellite reflections in R 3 can be 
neglected as mentioned in the previous section, it is 
difficult to determine the precise phase regardless of the 
commensurability because Fh is almost independent of 
the phase. 

Another phase problem occurs in the substitutional 
modulation without an accompanying displacive 
modulation. For simplicity, we consider one-di- 
mensional modulation in the commensurate case. Then 
the structure-factor formula (19) reduces to 

1 
F h =  "M Z p" fU(h) p . ( . ~ )  

,u(RIr) 

× exp{2~i~[hj(R~cu)j + hjrj]},  (20) 

where ~ = v/M + klYc ~ + k2fc ~ + k3fc ~ and the 
temperature factor is neglected for simplicity. From (9), 
P" (~g) is written as 

1 
P " ( ' ~ )  = 9- Z P~ exp {2n/m.~} + c.c. (21) 

m 

The Pg term in (21) contributes only to the funda- 
mental (main) reflections hi h2h30. Similarly, the P~ 
term (m = 1, 2, ...) and its complex conjugate 
contribute only to the mth-order satellite reflections, 
h I h2h 3 + m, and these satellites do not superpose on 
the other satellites with different m except for m = M/2 
in an even-M case. Therefore, the intensity for 
h i h 2 h 3 m is proportional to 

Z p" f " (h )  
I.t 

( / 3 1 x ~ P"--,n exp 2m Z [hj(R .~")j + hj rj] + 2z~imr 
(RIt) ( j= l  

+ Z P",,,exp 2m Z [hj (8 ' .~") j+  hj~ l+ 2rcimrl 
(R'l~') I, j=l 

(22) 

where PU_ m is the complex conjugate of P~, (R I r) runs 
over all symmetry operators transforming k into k and 
(R' It ') over those transforming k into - k  if any. The 
phase of the modulation function of (21) is determined 
by the argument of the complex amplitude P~. 
Expression (22) shows that the uniform phase shift of 
P~ for all the non-equivalent atoms gives the same 
intensity if the second term does not exist. Even if the 
second term exists, the ambiguity of the sign of PUre 
remains. Therefore, in the case of pure substitutional 
modulation, the relative sign of different Fourier terms 
PUz (m = 1, 2 . . . .  ) cannot be determined in principle 
except for the case of m = M/2. This fact has been 
shown by Korekawa (1964) for a primitive lattice with 
only one atom in the unit cell. The above argument 
shows that this is true for a general one-dimensional 
modulation and a similar consideration concludes that 
this is also the case regardless of the commensurability 
and the dimension of modulation. If the density (or 
substitutional) modulation is not accompanied by the 
displacive modulation, the structure cannot generally 
be determined from diffraction experiments without the 
constraint from the physical point of view. The 
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constraint on the occupation probability plays an 
essential role in this case. For instance, in a completely 
ordered structure with vacancies, the occupation 
probability of each atomic site is one or zero. Such a 
condition makes it possible to determine the density 
modulation. In this respect, the extension of de Wolff's 
formula for the density (substitutional) modulation to 
the case including the displacive modulation is essential 
to the density modulation analysis. When the displacive 
modulation is weak, the modulation function syn- 
thesized by Pg with correct absolute value but wrong 
sign (phase) may give a subminimum with a notably 
small R factor. 

Another important conclusion from (22) is that the 
structure factor of the mth-order satellite reflection 
depends linearly only on P~-m" Therefore, the least- 
squares refinement taking PU_+m as the variable param- 
eters [in which Y h ( I F  oh[ -- I Fchl) 2 is minimized] 
will rapidly converge owing to this linear dependence, 
although the phase problem mentioned above remains. 
A similar situation exists in the displacive modulation 
with small displacement. We also consider a case of 
one-dimensional modulation with a commensurable 
wave vector. In this case the structure factor is 
approximated by 

Fh=-77 Z p" fU(h) 1 + 2 n / ~  h iu~(Y¢~) 
p(Rtr) v=l j 

Therefore, the u}',,, linearly contribute to the satellite 
reflections. This will also give smooth convergence. The 
above arguments conclude that, if the displacement 
from the fundamental structure is small, it is expected 
that the least-squares refinement taking u}',,,, P~ as 
parameters smoothly converges from the fundamental 
structure. This property is independent of the commen- 
surability, so that the present method will give some 
advantages not only in the incommensurate structure 
analysis but in the superstructure analysis. In fact, the 
analyses based on (15) and (19) smoothly converged 
for the cases of CuAu (commensurate structure) and 
wiistite (incommensurate structure) which will be 
mentioned in the succeeding papers. In many 

modulated structures, the displacement from the 
fundamental structure is small, so that the present 
method can be conveniently applied to the analyses of 
such structures. 

The author greatly thanks Dr H. Nakazawa for 
instructive discussions and advice during the present 
work and also thanks Professor N. Morimoto, Dr M. 
Kitamura and Dr K. Koto for valuable discussions as 
well as critically reading an earlier version of this paper. 
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